20,773 research outputs found

    Representativeness of samples from general practice lists in epidemiological studies: case-control study

    Get PDF
    Ethical constraints often prevent epidemiological studies from evaluating the impact of non-participation. Particular problems may arise when subjects fail to respond to an approach by researchers or when they cannot be contacted because of inaccurate contact details or a doctor's refusal to give permission for their patient to be approached. If these subjects differ from those subjects who agree or decline to participate then the validity and generalisability of the study may be compromised. We investigated these issues in a case-control study of acute leukaemia in England

    Digital Scotland, the relevance of library research and the Glasgow Digital Library Project

    Get PDF
    The Glasgow Digital Library (GDL) Project has a significance over and above its primary aim of creating a joint digital library for the citizens of Glasgow. It is also both an important building block in the development of a planned and co-ordinated 'virtual Scotland' and a rich environment for research into issues relevant to that enterprise. Its creation comes at a time of political, social, economic and cultural change in Scotland, and may be seen, at least in part, as a response to a developing Scottish focus in these areas, a key element of which is a new socially inclusive and digitally driven educational vision and strategy based on the Scottish traditions of meritocratic education, sharing and common enterprise, and a fiercely independent approach. The initiative is based at the Centre for Digital Library Research at Strathclyde University alongside a range of other projects of relevance both to the development of a coherent virtual landscape in Scotland and to the GDL itself, a supportive environment which allows it to draw upon the research results and staff expertise of other relevant projects for use in its own development and enables its relationship to virtual Scotland to be both explored and developed more readily. Although its primary aim is the creation of content (based initially on electronic resources created by the institutions, on public domain information, and on joint purchases and digitisation initiatives) the project will also investigate relationships between regional and national collaborative collection management programmes with SCONE (Scottish Collections Network Extension project) and relationships between regional and national distributed union catalogues with CAIRNS (Co-operative Academic Information Retrieval Network for Scotland) and COSMIC (Confederation of Scottish Mini-Clumps). It will also have to tackle issues associated with the management of co-operation

    Loss of purity by wave packet scattering at low energies

    Full text link
    We study the quantum entanglement produced by a head-on collision between two gaussian wave packets in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering amplitudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the transverse area of the wave packets.Comment: 7 pages, 1 figur

    Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems

    Get PDF
    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE

    Physical Properties of a Pilot Sample of Spectroscopic Close Pair Galaxies at z ~ 2

    Get PDF
    We use Hubble Space Telescope Wide-Field Camera 3 (HST/WFC3) rest-frame optical imaging to select a pilot sample of star-forming galaxies in the redshift range z = 2.00-2.65 whose multi-component morphologies are consistent with expectations for major mergers. We follow up this sample of major merger candidates with Keck/NIRSPEC longslit spectroscopy obtained in excellent seeing conditions (FWHM ~ 0.5 arcsec) to obtain Halpha-based redshifts of each of the morphological components in order to distinguish spectroscopic pairs from false pairs created by projection along the line of sight. Of six pair candidates observed, companions (estimated mass ratios 5:1 and 7:1) are detected for two galaxies down to a 3sigma limiting emission-line flux of ~ 10^{-17} erg/s/cm2. This detection rate is consistent with a ~ 50% false pair fraction at such angular separations (1-2 arcsec), and with recent claims that the star-formation rate (SFR) can differ by an order of magnitude between the components in such mergers. The two spectroscopic pairs identified have total SFR, SFR surface densities, and stellar masses consistent on average with the overall z ~ 2 star forming galaxy population.Comment: 11 pages, 5 figures. Accepted for publication in Ap

    Analysis of photon-atom entanglement generated by Faraday rotation in a cavity

    Full text link
    Faraday rotation based on AC Stark shifts is a mechanism that can entangle the polarization variables of photons and atoms. We analyze the structure of such entanglement by using the Schmidt decomposition method. The time-dependence of entanglement entropy and the effective Schmidt number are derived for Gaussian amplitudes. In particular we show how the entanglement is controlled by the initial fluctuations of atoms and photons.Comment: 6 pages, 3 figure

    A statistical method for measuring the Galactic potential and testing gravity with cold tidal streams

    Get PDF
    We introduce the Minimum Entropy Method, a simple statistical technique for constraining the Milky Way gravitational potential and simultaneously testing different gravity theories directly from 6D phase-space surveys and without adopting dynamical models. We demonstrate that orbital energy distributions that are separable (i.e. independent of position) have an associated entropy that increases under wrong assumptions about the gravitational potential and/or gravity theory. Of known objects, `cold' tidal streams from low-mass progenitors follow orbital distributions that most nearly satisfy the condition of separability. Although the orbits of tidally stripped stars are perturbed by the progenitor's self-gravity, systematic variations of the energy distribution can be quantified in terms of the cross-entropy of individual tails, giving further sensitivity to theoretical biases in the host potential. The feasibility of using the Minimum Entropy Method to test a wide range of gravity theories is illustrated by evolving restricted N-body models in a Newtonian potential and examining the changes in entropy introduced by Dirac, MONDian and f(R) gravity modifications.Comment: Accepted for publication in ApJ. 11 pages 6 figure

    Model for resonant photon creation in a cavity with time dependent conductivity

    Full text link
    In an electromagnetic cavity, photons can be created from the vacuum state by changing the cavity's properties with time. Using a simple model based on a massless scalar field, we analyze resonant photon creation induced by the time-dependent conductivity of a thin semiconductor film contained in the cavity. This time dependence may be achieved by irradiating periodically the film with short laser pulses. This setup offers several experimental advantages over the case of moving mirrors.Comment: 9 pages, 1 figure. Minor changes. Version to appear in Phys. Rev.

    Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics

    Full text link
    We study transport through an electronic Mach-Zehnder interferometer recently devised at the Weizmann Institute. We show that this device can be used to probe statistics of quasiparticles in the fractional quantum Hall regime. We calculate the tunneling current through the interferometer as the function of the Aharonov-Bohm flux, temperature and voltage bias, and demonstrate that its flux-dependent component is strongly sensitive to the statistics of tunneling quasiparticles. More specifically, the flux-dependent and flux-independent contributions to the current are related by a power law, the exponent being a function of the quasiparticle statistics.Comment: 22 pages; 8 figure

    S-wave quantum entanglement in a harmonic trap

    Full text link
    We analyze the quantum entanglement between two interacting atoms trapped in a spherical harmonic potential. At ultra-cold temperature, ground state entanglement is generated by the dominated s-wave interaction. Based on a regularized pseudo-potential Hamiltonian, we examine the quantum entanglement by performing the Schmidt decomposition of low-energy eigenfunctions. We indicate how the atoms are paired and quantify the entanglement as a function of a modified s-wave scattering length inside the trap.Comment: 10 pages, 5 figures, to be apear in PR
    • …
    corecore